Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Clin Med ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592109

RESUMO

(1) Introduction: The laparoscopic approach to low pelvic tumors is challenging and hindered by suboptimal tumor visualization and dissection, with possible oncological failure. Stereotactic navigation provides real-time image guidance that may optimize safety, accuracy, and precision when dissecting challenging low pelvic tumors. (2) Methods: Preoperative CT images were acquired with eight skin-fixed fiducials and loaded into a navigation system. A patient tracker was mounted on the bed side. Patient-to-image paired point registration was performed, and an instrument tracker was mounted on a laparoscopic instrument and calibrated for instrument tracking. Surgical operations were performed with real-time stereotactic navigation assistance. (3) Results: Three patients underwent stereotactic navigation surgery. Fiducial registration errors were good to optimal (±1.9, ±3.4, and ±3.4 mm). Lesions were easily identified and targeted with real-time navigation. Surgeries were uneventful. Histopathology examinations identified one retro-rectal schwannoma, one lateral pelvic recurrence from rectal adenocarcinoma, and one advanced anal canal carcinoma. No navigation-related complications, readmissions, or postoperative mortalities were observed. (4) Conclusions: The application of laparoscopic stereotactic navigation surgery to complex low pelvic tumors is feasible and could impact oncological surgical quality by enabling tumor targeting and ensuring resection margins. Further wider series are needed to confirm stereotactic navigation's impact on challenging low pelvic tumors.

2.
Small Methods ; : e2400302, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634222

RESUMO

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) have gained interest as candidates for the bottom cell of all-perovskite tandem solar cells due to their broad absorption of the solar spectrum. A notable challenge arises from the prevalent use of the hole transport layer, PEDOT:PSS, known for its inherently high doping level. This high doping level can lead to interfacial recombination, imposing a significant limitation on efficiency. Herein, NaOH is used to dedope PEDOT:PSS, with the aim of enhancing the efficiency of Sn-Pb PSCs. Secondary ion mass spectrometer profiles indicate that sodium ions diffuse into the perovskite layer, improving its crystallinity and enlarging its grains. Comprehensive evaluations, including photoluminescence and nanosecond transient absorption spectroscopy, confirm that dedoping significantly reduces interfacial recombination, resulting in an open-circuit voltage as high as 0.90 V. Additionally, dedoping PEDOT:PSS leads to increased shunt resistance and high fill factor up to 0.81. As a result of these improvements, the power conversion efficiency is enhanced from 19.7% to 22.6%. Utilizing NaOH to dedope PEDOT:PSS also transitions its nature from acidic to basic, enhancing stability and exhibiting less than a 7% power conversion efficiency loss after 1176 h of storage in N2 atmosphere.

3.
Ann Surg Treat Res ; 106(3): 133-139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435490

RESUMO

Purpose: The coronavirus disease 2019 (COVID-19) pandemic has led to significant global casualties. This study examines the postoperative impact of COVID-19 on patients who underwent gastrointestinal surgery, considering their heightened vulnerability to infections and increased morbidity and mortality risk. Methods: This retrospective observational study was conducted at a tertiary center and patients who underwent gastrointestinal surgery between January 2022 and February 2023 were included. Postoperative COVID-19 infection was defined as the detection of severe acute respiratory syndrome coronavirus 2 RNA by RT-PCR within 14 days after surgery. Propensity score matching was performed including age, sex, American Society of Anesthesiology physical status classification, and emergency operation between the COVID-19-negative (-) and -positive (+) groups. Results: Following 1:2 propensity score matching, 21 COVID-19(+) and 42 COVID-19(-) patients were included in the study. In the COVID-19(+) group, the postoperative complication rate was significantly higher (52.4% vs. 23.8%, P = 0.023). Mechanical ventilator requirement, intensive care unit (ICU) admission, and readmission rate did not significantly differ between the 2 groups. The median length of ICU (19 days vs. 4 days, P < 0.001) and hospital stay (18 vs. 8 days, P = 0.015) were significantly longer in the COVID-19(+) group. Patients with COVID-19 had a 2.4 times higher relative risk (RR) of major complications than patients without COVID-19 (RR, 2.37; 95% confidence interval, 1.254-4.467; P = 0.015). Conclusion: COVID-19 infection during the postoperative period in gastrointestinal surgery may have adverse outcomes which may increase the risk of major complications. Preoperative COVID-19 screening and protocols for COVID-19 prevention in surgical patients should be maintained.

4.
J Microbiol Biotechnol ; 34(4): 1-10, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38480001

RESUMO

Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of ß-Catenin. Since several anagen-inductive genes are regulated by ß-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated ß-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3ß/ß-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated ß-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.

5.
EBioMedicine ; 99: 104932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118400

RESUMO

BACKGROUND: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS: In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS: Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFß signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION: Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFß signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).


Assuntos
COVID-19 , Melfalan , gama-Globulinas , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Furões , Brônquios , Fator de Crescimento Transformador beta , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
6.
Cancers (Basel) ; 15(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38136337

RESUMO

This study aimed to assess recurrence patterns and related risk factors following curative resection of colorectal cancer (CRC). This retrospective observational study was conducted at a tertiary care center, including 2622 patients with stage I-III CRC who underwent curative resection between 2008 and 2018. Hazard rates of recurrence were calculated using a hazard function. The primary outcome was the peak recurrence time after curative resection and secondary outcomes were prognostic factors associated with recurrence. Over a median follow-up period of 53 months, the overall, locoregional and systemic recurrence rates were 8.9%, 0.7%, and 8.5%, respectively. Recurrence rates were significantly higher for rectal cancer (14.9% overall, 4.4% locoregionally, and 12.3% systemically) than for colon cancer (all p < 0.001). The peak recurrence time was 11 months, with variations in hazard rates and curves depending on the tumor location, stage, and risk factors. Patients with AL or CRM involvement exhibited a distinct pattern, with a high hazard rate in the early postoperative period. Understanding these recurrence patterns and risk factors is crucial for establishing effective postoperative surveillance strategies. Our findings suggested that short-interval surveillance should be considered during the first 2 years post-surgery, particularly for high-risk patients who should receive early attention.

7.
Biomedicines ; 11(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893216

RESUMO

Osteoarthritis (OA) is the most common joint disease that causes local inflammation and pain, significantly reducing the quality of life and normal social activities of patients. Currently, there are no disease-modifying OA drugs (DMOADs) available, and treatment relies on pain relief agents or arthroplasty. To address this significant unmet medical need, we aimed to develop monoclonal antibodies that can block the osteoclast-associated receptor (OSCAR). Our recent study has revealed the importance of OSCAR in OA pathogenesis as a novel catabolic regulator that induces chondrocyte apoptosis and accelerates articular cartilage destruction. It was also shown that blocking OSCAR with a soluble OSCAR decoy receptor ameliorated OA in animal models. In this study, OSCAR-neutralizing monoclonal antibodies were isolated and optimized by phage display. These antibodies bind to and directly neutralize OSCAR, unlike the decoy receptor, which binds to the ubiquitously expressed collagen and may result in reduced efficacy or deleterious off-target effects. The DMOAD potential of the anti-OSCAR antibodies was assessed with in vitro cell-based assays and an in vivo OA model. The results demonstrated that the anti-OSCAR antibodies significantly reduced cartilage destruction and other OA signs, such as subchondral bone plate sclerosis and loss of hyaline cartilage. Hence, blocking OSCAR with a monoclonal antibody could be a promising treatment strategy for OA.

8.
Mater Horiz ; 10(12): 5892-5897, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37869990

RESUMO

We report external bias driven switchable photocurrent (anodic and cathodic) in 2.3 eV indirect band gap perovskite (BiFeO3) photoactive thin films. Depending on the applied bias our BiFeO3 films exhibit photocurrents more usually found in p- or n-type semiconductor photoelectrodes. In order to understand the anomalous behaviour ambient photoemission spectroscopy and Kelvin-probe techniques have been used to determine the band structure of the BiFeO3. We found that the Fermi level (Ef) is at -4.96 eV (vs. vacuum) with a mid-gap at -4.93 eV (vs. vacuum). Our photochemically determined flat band potential (Efb) was found to be 0.3 V vs. NHE (-4.8 V vs. vacuum). These band positions indicate that Ef is close to mid-gap, and Efb is close to the equilibrium with the electrolyte enabling either cathodic or anodic band bending. We show an ability to control switching from n- to p-type behaviour through the application of external bias to the BiFeO3 thin film. This ability to control majority carrier dynamics at low applied bias opens a number of applications in novel optoelectronic switches, logic and energy conversion devices.

9.
Biomed Pharmacother ; 168: 115647, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37826939

RESUMO

Superoxide dismutase (SOD) can convert active oxygen to oxygen or hydrogen peroxide, and recent research has suggested that it can protect against lung damage and fibrosis. Clinical applications based on SOD remain limited however due to costs and low stability. We here investigated a potential new therapeutic delivery system for this enzyme in the form of SOD-overexpressing Bacillus amyloliquefaciens spores which we introduced into a bleomycin-induced pulmonary fibrosis mouse model. This treatment significantly alleviated the disease, as quantified using a hydroxyproline assay, at 107 colony forming unit (CFU) of Bacillus spores per day. Exposure of the mice to the spores was further found to decrease the lung mRNA levels of CTGF, Col1a1, α-SMA, TGF-ß, TNF-α, and IL-6, and the protein levels of TGF-ß, Smad2/3, αSMA and Col1a1, all major indicators of pulmonary fibrosis. Survival benefits, and reduced byproducts of lipid peroxidase such as malondialdehyde and 4-hydroxynen, were also noted in the treated animals. The beneficial effects of these Bacillus spores on pulmonary fibrosis were further found to be greater than the equivalent free SOD concentration. Immunofluorescence staining of primary pulmonary fibroblasts extracted from the bleomycin-induced model showed decreased αSMA expression following the in vivo treatment with SOD-overexpressing Bacillus. Our treatment approach SOD through Bacillus spores shows beneficial effects against pulmonary fibrosis, combined with the suppression of the SMAD/TGF-ß pathway, suggesting that it is an effective novel delivery route for antioxidants.


Assuntos
Bacillus amyloliquefaciens , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Bacillus amyloliquefaciens/metabolismo , Esporos Bacterianos/metabolismo , Pulmão , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Bleomicina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
10.
Adv Mater ; 35(49): e2306655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37670609

RESUMO

A bulk-heterojunction (BHJ) blend is commonly used as the photoactive layer in organic photodetectors (OPDs) to utilize the donor (D)/acceptor (A) interfacial energetic offset for exciton dissociation. However, this strategy often complicates optimization procedures, raising serious concerns over device processability, reproducibility, and stability. Herein, highly efficient OPDs fabricated with single-component organic semiconductors are demonstrated via solution-processing. The non-fullerene acceptors (NFAs) with strong intrinsic D/A character are used as the photoactive layer, where the emissive intermolecular charge transfer excitonic (CTE) states are formed within <1 ps, and efficient photocurrent generation is achieved via strong quenching of these CTE states by reverse bias. Y6 and IT-4F-based OPDs show excellent OPD performances, low dark current density (≈10-9 A cm-2 ), high responsivity (≥0.15 A W-1 ), high specific detectivity (>1012 Jones), and fast photo-response time (<10 µs), comparable to the state-of-the-art BHJ OPDs. Together with strong CTE state quenching by electric field, these excellent OPD performances are also attributed to the high quadrupole moments of NFA molecules, which can lead to large interfacial energetic offset for efficient CTE dissociation. This work opens a new way to realize efficient OPDs using single-component systems via solution-processing and provides important molecular design rules.

12.
Adv Mater ; : e2211184, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626011

RESUMO

Polarons exist when charges are injected into organic semiconductors due to their strong coupling with the lattice phonons, significantly affecting electronic charge-transport properties. Understanding the formation and (de)localization of polarons is therefore critical for further developing organic semiconductors as a future electronics platform. However, there are very few studies reported in this area. In particular, there is no direct in situ monitoring of polaron formation and identification of its dependence on molecular structure and impact on electrical properties, limiting further advancement in organic electronics. Herein, how a minor modification of side-chain density in thiophene-based conjugated polymers affects the polaron formation via electrochemical doping, changing the polymers' electrical response to the surrounding dielectric environment for gas sensing, is demonstrated. It is found that the reduction in side-chain density results in a multistep polaron formation, leading to an initial formation of localized polarons in thiophene units without side chains. Reduced side-chain density also allows the formation of a high density of polarons with fewer polymer structural changes. More numerous but more localized polarons generate a stronger analyte response but without the selectivity between polar and non-polar solvents, which is different from the more delocalized polarons that show clear selectivity. The results provide important molecular understanding and design rules for the polaron formation and its impact on electrical properties.

13.
J Cell Physiol ; 238(10): 2425-2439, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642258

RESUMO

Bone resorption can be caused by excessive differentiation and/or activation of bone-resorbing osteoclasts. While microbe-associated molecular patterns can influence the differentiation and activation of bone cells, little is known about the role of lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria, in the regulation of bone metabolism. In this study, we investigated the effect of LTA on bone metabolism using wild-type Staphylococcus aureus and the LTA-deficient mutant strain. LTA-deficient S. aureus induced higher bone loss and osteoclast differentiation than wild-type S. aureus. LTA isolated from S. aureus (SaLTA) inhibited osteoclast differentiation from committed osteoclast precursors in the presence of various osteoclastogenic factors by downregulating the expression of NFATc1. Remarkably, SaLTA attenuated the osteoclast differentiation from committed osteoclast precursors of TLR2-/- or MyD88-/- mice and from the committed osteoclast precursors transfected with paired immunoglobulin-like receptor B-targeting siRNA. SaLTA directly interacted with gelsolin, interrupting the gelsolin-actin dissociation which is a critical process for osteoclastogenesis. Moreover, SaLTA suppressed the mRNA expression of dendritic cell-specific transmembrane protein, ATPase H+ transporting V0 subunit D2, and Integrin, which encode proteins involved in cell-cell fusion of osteoclasts. Notably, LTAs purified from probiotics, including Bacillus subtilis, Enterococcus faecalis, and Lactobacillus species, also suppressed Pam2CSK4- or RANKL-induced osteoclast differentiation. Taken together, these results suggest that LTAs have anti-resorptive activity through the inhibition of osteoclastogenesis by interfering with the gelsolin-actin dissociation and may be used as effective therapeutic agents for the prevention or treatment of inflammatory bone diseases.

14.
Thorax ; 78(11): 1080-1089, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37495367

RESUMO

BACKGROUND: Diet has a crucial role in the gut microbiota, and dysbiosis in the gut and lungs has been suggested to be associated with chronic obstructive pulmonary disease. We compared the diet, microbiome and metabolome between asymptomatic smokers and those with emphysema. METHODS: We enrolled 10 asymptomatic smokers with preserved lung function and 16 smokers with emphysema with severe airflow limitation. Dietary intake information was gathered by a self-reported questionnaire. Sputum and faecal samples were collected for microbial and metabolomics analysis. A murine model of emphysema was used to determine the effect of metabolite supplementation. RESULTS: Despite having a similar smoking history with emphysema patients, asymptomatic smokers had higher values of body mass index, fibre intake and faecal acetate level. Linear discriminant analysis identified 17 microbial taxonomic members that were relatively enriched in the faeces of asymptomatic smokers. Analysis of similarity results showed dissimilarity between the two groups (r=0.287, p=0.003). Higher acetate level was positively associated with forced expiratory volume in one second in the emphysema group (r=0.628, p=0.012). Asymptomatic smokers had a greater number of species associated with acetate and propionate (r>0.6) than did those with emphysema (30 vs 19). In an emphysema mouse model, supplementation of acetate and propionate reduced alveolar destruction and the production of proinflammatory cytokines, and propionate decreased the CD3+CD4+IL-17+ T-cell population in the lung and spleen. CONCLUSION: Smokers with emphysema showed differences in diet, microbiome and short-chain fatty acids compared with asymptomatic smokers. Acetate and propionate showed therapeutic effects in a smoking-induced murine model of emphysema.


Assuntos
Enfisema , Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Fumantes , Propionatos , Modelos Animais de Doenças , Volume Expiratório Forçado , Enfisema/complicações , Acetatos
15.
Immune Netw ; 23(3): e26, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416931

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces excessive pro-inflammatory cytokine release and cell death, leading to organ damage and mortality. High-mobility group box 1 (HMGB1) is one of the damage-associated molecular patterns that can be secreted by pro-inflammatory stimuli, including viral infections, and its excessive secretion levels are related to a variety of inflammatory diseases. Here, the aim of the study was to show that SARS-CoV-2 infection induced HMGB1 secretion via active and passive release. Active HMGB1 secretion was mediated by post-translational modifications, such as acetylation, phosphorylation, and oxidation in HEK293E/ACE2-C-GFP and Calu-3 cells during SARS-CoV-2 infection. Passive release of HMGB1 has been linked to various types of cell death; however, we demonstrated for the first time that PANoptosis, which integrates other cell death pathways, including pyroptosis, apoptosis, and necroptosis, is related to passive HMGB1 release during SARS-CoV-2 infection. In addition, cytoplasmic translocation and extracellular secretion or release of HMGB1 were confirmed via immunohistochemistry and immunofluorescence in the lung tissues of humans and angiotensin-converting enzyme 2-overexpressing mice infected with SARS-CoV-2.

16.
J Gastrointest Surg ; 27(8): 1694-1701, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37407895

RESUMO

BACKGROUND: Serum carcinoembryonic antigen (CEA) increase in patients with colorectal cancer (CRC) recurrence was observed to vary depending on their initial values. This study aimed to evaluate the diagnostic accuracy of CEA for detecting CRC recurrence in patients with normal and elevated initial CEA levels. METHODS: A total of 261 CRC recurrence patients who underwent curative resection were included and divided into two groups, normal and elevated initial CEA. Analysis was performed comparing patient, tumor, and recurrence characteristics retrospectively. RESULTS: There were 192 patients with normal and 69 with high initial CEA levels. Patient and tumor characteristics were similar. Eighty-six patients had elevated CEA at the time of recurrence, and the overall sensitivity of CEA for recurrence was 33.0%. In the high initial CEA group, 59.4% exhibited increased CEA level at recurrence, whereas in patients with normal initial CEA levels, only 23.4% showed elevated levels (p < 0.001). Patients with both high CEA preoperatively and at recurrence had more local recurrence, but there was no statistical significance (p = 0.053), and the rate of lung metastasis was higher in patients whose CEA remained normal at recurrence (38.3% vs. 24.4%, p = 0.026). The overall survival of patients with elevated CEA at recurrence was worse than those with normal CEA levels (56.9% vs. 42.4%, p = 0.003). CONCLUSION: The diagnostic accuracy of CEA for detecting recurrence depends on initial CEA level. Regardless of the initial CEA level, elevation at recurrence was significantly associated with overall survival in patients with recurrent CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Humanos , Antígeno Carcinoembrionário , Estudos Retrospectivos , Recidiva Local de Neoplasia/patologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/cirurgia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/cirurgia , Biomarcadores Tumorais , Prognóstico
17.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37420902

RESUMO

Research on healthcare and body monitoring has increased in recent years, with respiratory data being one of the most important factors. Respiratory measurements can help prevent diseases and recognize movements. Therefore, in this study, we measured respiratory data using a capacitance-based sensor garment with conductive electrodes. To determine the most stable measurement frequency, we conducted experiments using a porous Eco-flex and selected 45 kHz as the most stable frequency. Next, we trained a 1D convolutional neural network (CNN) model, which is a type of deep learning model, to classify the respiratory data according to four movements (standing, walking, fast walking, and running) using one input. The final test accuracy for classification was >95%. Therefore, the sensor garment developed in this study can measure respiratory data for four movements and classify them using deep learning, making it a versatile wearable in the form of a textile. We expect that this method will advance in various healthcare fields.


Assuntos
Redes Neurais de Computação , Respiração , Humanos , Movimento (Física) , Taxa Respiratória , Têxteis
18.
ACS Appl Mater Interfaces ; 15(21): 25224-25231, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191283

RESUMO

The introduction of nonfullerene acceptors (NFA) facilitated the realization of high-efficiency organic solar cells (OSCs); however, OSCs suffer from relatively large losses in open-circuit voltage (VOC) as compared to inorganic or perovskite solar cells. Further enhancement in power conversion efficiency requires an increase in VOC. In this work, we take advantage of the high dipole moment of twisted perylene-diimide (TPDI) as a nonfullerene acceptor (NFA) to enhance the VOC of OSCs. In multiple bulk heterojunction solar cells incorporating TPDI with three polymer donors (PTB7-Th, PM6 and PBDB-T), we observed a VOC enhancement by modifying the cathode with a polyethylenimine (PEIE) interlayer. We show that the dipolar interaction between the TPDI NFA and PEIE─enhanced by the general tendency of TPDI to form J-aggregates─plays a crucial role in reducing nonradiative voltage losses under a constant radiative limit of VOC. This is aided by comparative studies with PM6:Y6 bulk heterojunction solar cells. We hypothesize that incorporating NFAs with significant dipole moments is a feasible approach to improving the VOC of OSCs.

19.
Adv Sci (Weinh) ; 10(17): e2206802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097705

RESUMO

Herein, a new ternary strategy to fabricate efficient and photostable inverted organic photovoltaics (OPVs) is introduced by combining a bulk heterojunction (BHJ) blend and a fullerene self-assembled monolayer (C60 -SAM). Time-of-flight secondary-ion mass spectrometry - analysis reveals that the ternary blend is vertically phase separated with the C60 -SAM at the bottom and the BHJ on top. The average power conversion efficiency - of OPVs based on the ternary system is improved from 14.9% to 15.6% by C60 -SAM addition, mostly due to increased current density (Jsc ) and fill factor -. It is found that the C60 -SAM encourages the BHJ to make more face-on molecular orientation because grazing incidence wide-angle X-ray scattering - data show an increased face-on/edge-on orientation ratio in the ternary blend. Light-intensity dependent Jsc data and charge carrier lifetime analysis indicate suppressed bimolecular recombination and a longer charge carrier lifetime in the ternary system, resulting in the enhancement of OPV performance. Moreover, it is demonstrated that device photostability in the ternary blend is enhanced due to the vertically self-assembled C60 -SAM that successfully passivates the ZnO surface and protects BHJ layer from the UV-induced photocatalytic reactions of the ZnO. These results suggest a new perspective to improve both performance and photostability of OPVs using a facial ternary method.

20.
Nat Commun ; 14(1): 1870, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015916

RESUMO

The non-fullerene acceptors (NFAs) employed in state-of-art organic photovoltaics (OPVs) often exhibit strong quadrupole moments which can strongly impact on material energetics. Herein, we show that changing the orientation of Y6, a prototypical NFA, from face-on to more edge-on by using different processing solvents causes a significant energetic shift of up to 210 meV. The impact of this energetic shift on OPV performance is investigated in both bilayer and bulk-heterojunction (BHJ) devices with PM6 polymer donor. The device electronic bandgap and the rate of non-geminate recombination are found to depend on the Y6 orientation in both bilayer and BHJ devices, attributed to the quadrupole moment-induced band bending. Analogous energetic shifts are also observed in other common polymer/NFA blends, which correlates well with NFA quadrupole moments. This work demonstrates the key impact of NFA quadruple moments and molecular orientation on material energetics and thereby on the efficiency of high-performance OPVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...